Survey Strategy and Cadence Choices For the Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST)

R. Lynne Jones, Peter Yoachim, Ribeiro Tiago, Željko Ivezić, And Eric H. Neilsen Jr. 3

¹ University of Washington, Dept. of Astronomy, Box 351580, Seattle, WA 98195, USA

² LSST Project Office, 950 N. Cherry Ave., Tucson, AZ 85719, USA

³ Fermi National Accelerator Laboratory, P. O. Box 500, Batavia, IL 60510, USA

(Dated: July 28, 2020)

ABSTRACT

A summary of survey strategy and cadence choices, simulated and evaluated by the Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST) Scheduler Team, prepared for the Survey Cadence and Optimization Committee (SCOC).

The initial idea of a large telescope survey, covering the entire visible sky repeatedly every few days in multiple bandpasses over the course of ten years, is the core idea of the LSST. A large area (about 20,000 square degrees) observed under a wide range of conditions to deep coadded limiting magnitudes in bandpasses ugrizy enables cosmological studies with unprecedented precision; the same survey, when cadenced well, can serve to open new windows into our understanding of transient and variable stars, and extend our knowledge of small bodies throughout the Solar System by orders of magnitude. The outlines of these goals and some basic necessary requirements for those goals are outlined in the LSST Science Requirements Document (SRD)^{a)}. Finding options for the survey strategy to meet more detailed needs of an even wider range of science goals, as well as building the LSST Scheduler and Metrics Analysis Framework, has been the work of the LSST Scheduler Team with support and input from the astronomical community, including the COSEP ^{b)}, the Call for White Papers^{c)}, and innumerable metrics, and guidance from the LSST Science Advisory Committee in their Recommendations for Operations Simulator Experiments^{d)}.

a) ls.st/srd

b) https://github.com/LSSTScienceCollaborations/ObservingStrategy

c) Document-28382

d) Document-32816

Contents

1. Introduction	5
2. Survey Simulator Overview	7
2.1. The Model Observatory	8
2.2. The Scheduler	10
2.2.1. Tier 1: Deep Drilling Fields	10
2.2.2. Tier 2: The Blobs	11
2.2.3. Tier 3: Greedy	11
2.3. Filter Mounting Schedule	12
3. Basic Survey Requirements	12
4. Feedback from white papers and SAC	13
5. Overview of Metrics	13
6. Individual Scheduler Experiments	13
6.1. Dust With Alternating	13
6.2. Bulge	14
6.3. DCR	15
6.4. Deep Drilling Fields	15
6.5. Filter Distribution	18
6.6. Footprints	18
6.7. Good Seeing	18
6.8. Short Exposures	19
6.9. Spiders	19
6.10. Third Observation	20
6.11. Twilight NEO Survey	21
6.12. Longer u Exposure Time	21
6.13. Variable Exposure Times	22
6.14. WFD Depth	23
6.15. Rolling Cadences	23
6.16. Even Filters	24
6.17. Ecliptic Pairs	25
6.18. Aliasing	25
7. FBS release v1.6	26
7.1. Baseline	27
7.2. DDF Heavy	30
7.3. Barebones	30
7.4 Data Management Heavy	31

6)
·	,

	7.5. Rolling Extragalactic7.6. Milky Way Heavy7.7. Solar System Heavy7.8. Combo Dust	32 32 34 35
8.	Individual Visit Length	37
9.	Intra-night Cadence	37
10.	Wide-Fast-Deep Footprint	38
11.	Rolling cadence	38
12.	Northern minisurveys	38
13.	Southern minisurveys	38
14.	Low Galactic Latitudes	38
15.	Twilight Observing	38
16.	Deep Drilling Fields	39
17.	ToO modes	39
18.	Further Optimizing	39
19.	Conclusions	39
20.	Outstanding Questions	40
	20.1. Exposure Time(s)	40
	20.2. Pairs and Filter Choice	41
	20.3. Survey Contingency	41
	20.4. Deep Drilling Fields	41
	20.5. Rotational Dithering	42
	20.6. Spatial Dithering	42
	20.7. Survey Footprint	42
	20.8. Rolling Cadence	43
	20.9. Best Use of Twilight Time	43
	20.10. Target of Opportunity	43
	20.11. Image Differencing Templates, DCR	43
	20.12. Satellite Megaconstellations	44
	20.13. Aliasing	44
	20.14. Classification of Transients	44

21. Acronyms 45

4

1. INTRODUCTION

Vera C. Rubin Observatory (Rubin) will carry out the Legacy Survey of Space and Time (LSST) over the first ten years of its lifetime. The LSST is intended to meet four core science goals:

- constraining dark energy and dark matter
- taking an inventory of the Solar System
- exploring the transient optical sky, and
- mapping the Milky Way.

The basic requirements for these goals are described in the LSST Science Requirements Document (SRD¹). In practice, the SRD intentionally places minimal quantitative constraints on the observing strategy, primarily requiring:

- A footprint for the 'main survey' of at least 18,000 deg², which must be uniformly covered to a median of 825 30-second visits per 9.6 deg² field, summed over all six filters, ugrizy (see SRD Tables 22 and 23). This places a minimum constraint on the time required to complete the main survey. Simulated surveys indicate that the main survey typically requires 80–90% of the available time (10 years) to reach this benchmark; even with scheduling improvements, it is unlikely that the goals of the main survey could be met with a time allocation significantly below 80%.
- Parallax and proper motion 1σ accuracies of 3 mas and 1 mas/yr per coordinate at r=24, respectively, in the main survey (see SRD Table 26), which places a weak constraint on how visits are distributed throughout the lifetime of the survey and throughout a season.
- Rapid revisits (40 seconds to 30 minutes) must be acquired over an area of at least 2000 deg² (see SRD table 25) for very fast transient discovery; this requirement can usually be satisfied via simple field overlaps when surveying contiguous areas of sky.

This leaves significant flexibility in the detailed cadence of observations within the main survey footprint, including the distribution of visits within a year (or between seasons), the distribution between filters and the definition of a 'visit' itself. Furthermore, these constraints apply to the main survey; the use of the remaining time (i.e., in mini surveys) is not constrained by the SRD.

In order to maximize the overall science impact of the LSST, in 2018 the project issued a call for white papers requesting survey strategy input². The 46 submitted white papers represent a wide swath of the astronomical community, and together

¹ The LSST Science Requirements Document (SRD) is available at http://ls.st/srd

² The call for white papers is available at http://ls.st/doc-28382

with the Community Observing Strategy Evaluation Paper (COSEP)³. The contents of these white papers were distilled into several areas for investigation by the LSST Science Advisory Council (SAC) in their advisory response to the project⁴.

This survey strategy optimization work is starting from an existing candidate baseline strategy, driven by the basic science goals. A brief introduction to the baseline survey strategy, expanded background of the primary LSST science goals, and concise descriptions of how these goals drive the basic survey strategy and data processing requirements are provided in the LSST Overview paper⁵. A reference survey simulation (baseline2018a), generated by an earlier version of the LSST survey simulation tools (see Section 2), provided an implemented example of this strategy. This starting point for the survey strategy can be described extremely briefly as follows:

- The main "wide-fast-deep" (WFD) survey, which covers $\sim 18,000 \text{ deg}^2$ of sky within the equatorial declination range $-62^{\circ} < \delta < +2^{\circ}$, and excluding the central portion of the Galactic plane. Within the main survey, two visits⁶ per 9.6 deg^2 field (in either the same or different filters) are acquired in each night, to allow identification of moving objects and rapidly varying transients, and to improve the reliability of the alert stream. These pairs of visits are repeated every three to four nights throughout the period the field is visible in each year (other nights are used to maximize the sky coverage). Each field in the main survey receives about 825 visits throughout the ten years of the LSST, spread over the six LSST filters ugrizy. The quantitative SRD constraints on area coverage, number of visits, parallax and proper motion errors, and rapid-revisit rate (40 seconds 30 minutes) apply to visits obtained in the main survey.
- The set of five **Deep Drilling Field candidate mini surveys**, consisting of five specific field pointings for a total of $\sim 50~\rm deg^2$, which are observed with a much denser sampling rate. These mini surveys use a similar sequence of visits; the fields are observed every three to four days, but in a sequence of multiple grizy exposures during gray and bright time, and then multiple sequential u band exposures during dark time. The current deep drilling mini survey fields are aimed at extragalactic science, providing a 'gold sample' to calibrate the main survey, and to discover Type Ia supernovae.
- The Galactic Plane candidate mini survey covers the central portion of the Galactic plane that is not included in the main survey, centered around $|l| = 0^{\circ}$ and covering $\sim 1860 \text{ deg}^2$. It is observed at a much reduced rate compared to the main survey, and with a smaller total number of observations per field (30 visits per field and per filter, in ugrizy), so as to provide astrometry

³ The github repository containing the living source for the COSEP is https://github.com/LSSTScienceCollaborations/ObservingStrategy

⁴ The SAC white paper report is available at http://ls.st/doc-32816

 $^{^5}$ The LSST Overview paper is a living document available at <code>http://ls.st/lop.</code>

 $^{^6}$ A 'visit' here is an LSST default visit, which consists of two back-to-back 15 sec exposures, for a total of 30 sec of on-sky exposure time. These back-to-back exposures are always in the same filter, separated only by the 2 second readout time.

and photometry of stars toward the Galactic center but without reaching the confusion limit in the coadded images. There is no requirement for pairs of visits in each night in this area.

- The North Ecliptic Spur candidate mini survey covers the area north of $\delta = +2^{\circ}$ to 10° north of the Ecliptic plane and is intended to observe the entire Ecliptic plane for the purpose of inventorying the minor bodies in the Solar System. This area ($\sim 4160~\rm deg^2$) is observed on a schedule similar to the main survey, although with a smaller total number of visits per field and only in filters griz.
- The South Celestial Pole candidate mini survey covers the region south of the main survey, to the South Celestial Pole, ~ 2315 deg², including the Magellanic Clouds. This mini survey is observed with a strategy similar to the Galactic Plane mini survey, with 30 visits per field per filter in ugrizy, and without requiring pairs of visits. This provides coverage of the Magellanic clouds, but without committing extensive time as these fields are at high airmasses from the LSST site.

This report covers the LSST Survey Strategy team's experiments with the LSST scheduler to address the optimization questions raised by the SAC. These questions include:

- How should the WFD footprint be defined?
- What should the cadence of visits within the WFD look like? This includes both the intra-night cadence and the inter-night cadence throughout the season.
- What is the impact of varying the footprint for mini-surveys?
- Can we leverage twilight observing?
- How should the Deep Drilling fields be distributed and what cadence should be used for their observations?
- What are the impact of ToO proposals, particularly gravitational wave followup?

Concluding introduction sentence. Optimize the last 10% "best" science.

2. SURVEY SIMULATOR OVERVIEW

Probably need some reference to what survey scheduler was used / how it was set up for various runs, how the runs were performed, and what the input weather and telescope models were like.

Earlier attempts at simulating LSST in Rothchild et al. (2019) and Naghib et al. (2019). ?

2.1. The Model Observatory

Discuss kinematic model, seeing model, weather model, sky brightness model.

The model observatory includes kinematic models for the dome, telescope altitude, telescope azimuth, and camera rotator. The model tracks relevant cable wraps angles for the telescope and camera. Filter changes are assumed to take two minutes, and changes of XXX degrees in altitude incur a 40s delay for open optics loops. The basic parameters of the kinematic model are largely unchanged from Delgado et al. (2014).

XXX-weather model

XXX–sky brightness The model observatory serves pre-computed sky brightness maps.

xxx-scheduled and unscheduled downtime

Simulations completed starting in 2020 use a revised database for the atmospheric seeing. The revised database, like its predecessor, is based on seeing measurements from the Geminin South DIMM, located at the same site as Rubin Observatory. We derived predicted delivered imager FWHM from the reported DIMM measurements using the approximation of the von Kárm/'an turbulance model given in Tokovinin (2002) and an outer scale of 30 meters, and validated this relationship between DIMM measurements and seeing by comparing these derived values to the image quality measured from the Gemini South GMOS instrument. We also tested the DIMM data by deriving a seeing using the Kolmogerov relationship and comparing the result to the seeing measured by the DECam imager on the Blanco telescope at CTIO, a few miles away.

For most time samples in the simulation database, we generated seeing data by resampling seeing derived from the DIMM into 5 minute intervals, and shifting it ahead 4748 days (13.000 tropical years). For example, the seeing for 2022-01-01 in the simulation database is taken from the DIMM seeing on 2009-01-01. Thus, most of the ten simulated years use seeing values that replay ten historical years.

There is, however, significant time for which no DIMM data is available, for example due to clouds or equipment failure. We used a model of $log(r_0)$ (where r_0 is the Fried parameter) derived from the DIMM data to generate artifical seeing values for these times. This model has several components:

- a yearly sinusoidal variation in $log(r_0)$ to include seasonal variation,
- a smooth (years timescale) fit to the residuals with respect to the seasonal variation to represent multi-year trends in seeing,
- a 1st-order autoregressive series (damped random walk) to represent variations in the nightly seeing, and
- another 1st-order AR series to represent variations on a 5-minute timescale within a night.

Artificial data generated according to this model therefore maintains the night to night and short term distributions and correlations present in the DIMM data, and follows seasonal variations and longer term trends in the DIMM data surrounding it.

2.2. The Scheduler

Optimally scheduling telescopic observations is a traditionally difficult problem. Most observatories have traditionally scheduled observations by hand. The LCO and ZTF have implemented integer linear programming techniques to optimize their scheduling (Lampoudi et al. 2015; Bellm et al. 2019). Integer programming is difficult to use for Rubin because we have multiple science goals which are intended to be serviced simultaneously. Thus, there is no well-defined value which can be maximized when scheduling Rubin. Rothchild et al. (2019) simulated Rubin observations with a very fast deterministic scheduler, essentially repeating a fixed raster pattern mostly along the meridian. This algorithm showed great promise, but had several downsides (such as occasionally pointing at the moon). For the Rubin scheduler, we follow the example in Naghib et al. (2019) and use a Markov Decision Process to select most of the observations.

The Rubin scheduler is designed to provide real-time decisions on where and how to observe. Because we expect there to be weather interruptions, we need a system that can recover quickly. Unlike other traditional telescope schedulers, we do not try to optimize a large number of observations in advance, but rather use a decision tree along with a modified Markov Decision Process. The scheduler behavior is set by a small number of free parameters that can be tuned.

Our baseline scheduler uses a three tier decision tree when deciding what observations to attempt.

2.2.1. Tier 1: Deep Drilling Fields

The first tier of the decision tree is to check if there are any deep drilling fields that should be executed. We typically have five DDFs in a simulation.

For a DDF to be eligible to send a sequence to the observing queue, it must

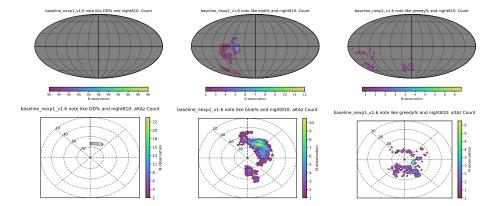
- Not currently be twilight
- Have enough time to finish a sequence before twilight begins
- Be in it's target hour angle range
- The moon must be down
- The DDF must not have exceeded it's limit of observations (typically $\sim 1\%$ of the total number of visits)

If the DDF has not fallen behind, it will space sequences by at least 1.5 days. There is also a check to see if the DDF will be feasible and better observed later in the night, in which case no observations are requested.

If the above conditions are met, the DDF sends it's sequence of observations to the queue to be executed. There are currently no attempts at recovery if a sequence is interrupted.

Name	RA	Dec
	(Deg)	(Deg)
ELAISS1	9.450	-44.000
XMM-LSS	35.708	-4.750
ECDFS	53.125	-28.100
COSMOS	150.100	2.182
EDFS	58.970	-49.280
EDFS	63.600	-47.600

Table 1. The location of the deep drilling fields used in our simulations.


The spatial position of the DDF is dithered nightly up to 0.7 degrees. The camera rotator is also varied nightly to be between -75 and 75 degrees with respect to the telescope.

If there are no DDFs requesting observations, the decision tree moves to the second tier. This tier is the survey workhorse, executing $\sim 80\%$ of the simulation visits. This tier will only request observations if it is not currently twilight, and there is at least 30 minutes before twilight begins.

A modified Markov Decision Process (MDP) is used to decide what sky region and filter combination to observe given the current conditions and observation history. Briefly, the MDP balances the desire to observe areas 1) that are closest to the optimal possible in terms of 5-sigma depth, 2) which have fallen behind the specified desired survey footprint, 3) are near the current telescope pointing and 4) in the currently loaded filter to minimize filter changes. In addition to these core components, the MDP includes a mask around zenith, a 30 degree mask around the moon, and small masks around the bright planets (Venus, Mars, Jupiter). The end product of the MDP is a reward function that ranks the desirability of every point in the sky. Because this tier does not execute in twilight, we assume the reward function is relatively stable on 40 minute timescales.

A sky area around the reward function maximum that will take ~ 22 minutes to observe (~ 35 pointings) is then selected. If possible, the area is selected to be be contiguous. The exact position of the telescope pointings are determined by the sky tessellation, which is randomly oriented for each night. The camera rotator angle (relative to the telescope) is also randomized between ± 80 degrees each night.

A traveling salesman algorithm is used to put the pointings in an order that minimizes the slew time. The list of pointings are then repeated, usually in a different filter, ensuring moving objects can be detected. One of seven possible filter combinations is used: u + g, u + r, g + r, r + i, i + z, z + y, or y + y. We use 30 second visits for the majority of simulations. The official baseline uses visits comprised of two 15 second snaps.

Figure 1. Examples of how the three scheduler tiers execute during a single night. Left panels show how a DDF sequence was observed during the night. Middle panels show observations taken as part of blob pairs. Right panels show the greedy observations taken in twilight time. The panels from left to right show the different decision tiers the scheduler uses, with the DDFs as the top tier and the greedy algorithm as the bottom tier.

If it is during morning or evening twilight, or close to morning twilight, the DDFs and Blob surveys will pass and the decision tree goes to the third and final tier, the greedy surveys.

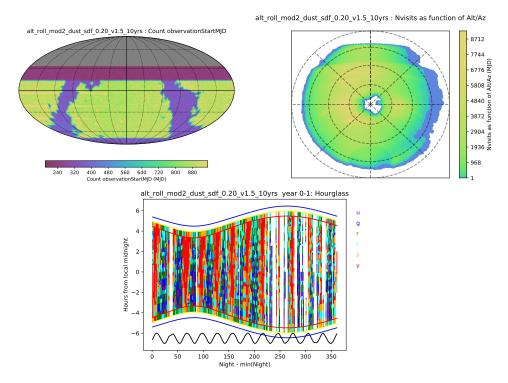
The greedy surveys use a similar Markov Decision Process as in Tier 2, but rather than selecting large areas of sky to observe, the survey selects a single pointing at a time. No attempt is made to observe greedy scheduled observations in pairs. Since this tier is primarily used in twilight time, it only schedules observations in the redder filters r, i, z, and y.

As with the Blob tier, the sky tessellation orientation is randomized each night so the final survey is spatially dithered.

2.3. Filter Mounting Schedule

In addition to the observations scheduler, we have a separate scheduler that decides which five filters should be loaded for the start of each night. By default, we mount redder filters (grizy) when the moon is more than 40% illuminated and bluer filters (ugriy) closer to new moon.

3. BASIC SURVEY REQUIREMENTS


Basic survey strategy starting point and why - in more depth? Discuss metrics related to these requirements.

Probably should show that all survey strategies evaluated do / need to meet these requirements (but maybe later?)

XXX–Relevant SRD requirements. 825 observations over 18,000 square degrees, fast revisits, and astrometry

XXX-general requirement to advance all 4 pillars of Rubin science

XXX—relevant requirement to publish a list of upcoming planned observations (1?2?) hours in advance.

Figure 2. The alt_roll_dust simulation that uses a footprint to avoid high extinction and tries to drive an every-other-day cadence.

4. FEEDBACK FROM WHITE PAPERS AND SAC

Broad outline of points to evaluate for survey strategy, and our approach in running the subsequent experiments (this should help make sense of what comes next)

Discuss basic types of SAC recommendations.

5. OVERVIEW OF METRICS

XXX-maybe a subset of the most important metrics?

6. INDIVIDUAL SCHEDULER EXPERIMENTS

Here we look at various experiments that explore varying a single aspect of the scheduler.

6.1. Dust With Alternating

This uses the dusty footprint and a basis function to encourage the scheduler to alternate between the north and south nightly. This is similar to what was originally done in the altSched simulations (Rothchild et al. 2019). This can help keep light curve sampling optimally spaced. By using a basis function, we encourage alternating north/south, but it is not absolutely enforced, making it possible for the scheduler to avoid the moon. Note we have improved the rolling cadence implementation to eliminate the over-exposed stripes and high airmass observations.

There is no additional NES, however there is a strip in the north observed in g, r, i, and z.

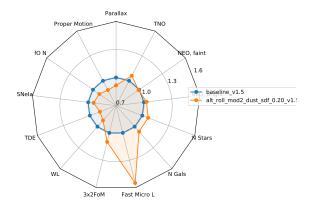
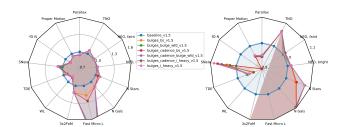
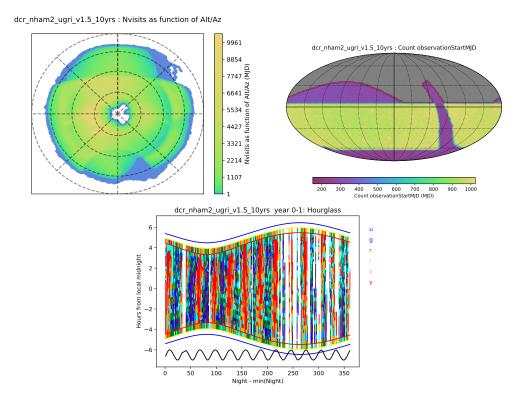



Figure 3. The science impact for alt_roll_dust.

Figure 4. Series of simulations trying different bulge observing strategies.


Figure 5. Science impact of our different bulge strategy simulations. The right panel is a zoom in of the left.

The science impact of this strategy is fairly minimal. By avoiding extinction regions, we have more stars and galaxies. The coverage of the LMC also increases the number of fast microlensing events.

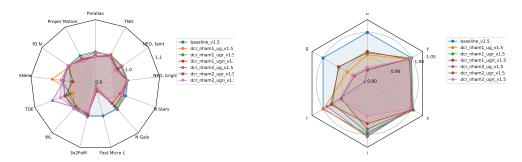
6.2. Bulge

We used recommendations from the SAC for different strategies for observing the galactic bulge. These simulations use the Big Sky footprint similar to the Olsen et al white paper.

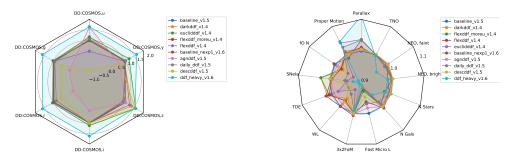
We use three footprints for bulge coverage 1) light coverage of the bulge and entire galactic plane, 2) the bulge as deep as WFD and 3) the bulge covered similarly to WFD, but with more observations in i. For each of these strategies, we run a version with natural cadence and one where we boost the priority of the bulge if it has not been observed in 2.5 days.

Figure 6. Intentionally taking observations at higher airmass to measure DCR.

Covering the bulge more deeply, we see an increase in the number of stars and fast microlensing events, with a slight decrease in the SRD metrics.


6.3. *DCR*

The LSST will not have an atmospheric chromatic corrector, thus difference imaging can be complicated by differential chromatic refraction (DCR). There is also potential science opportunities by being able to measure the chromatic shift in objects with sharp features in their SEDs (e.g., AGN with large emission lines).


These experiments look at how we could intentionally schedule a subset of images to be at high airmass so a DCR model could be built up. We test various combinations of filters to demand DCR observations (u+g, u+g+r, and u+g+r+i), and the number of observations to take at high airmass per year (1 or 2).

Even with 2 high airmass observations per year, we would still expect some area of the sky to fall in chip and raft gaps. It is also worth noting that in our baseline simulation, we observe a spot on the sky in u typically 60 times, or 6 times per year. Taking 2 high airmass observations per year in u decreases the final coadded depth by 0.15 mags.

Figure 7 shows the science impact is fairly minimal, but we tend to lose $\sim 0.1-0.2$ magnitudes of final coadded depth.

Figure 7. Science impact of including observations at high airmass for DCR. As expected, pushing observations to high airmass lowers the coadded depths (right) and has as slight negative impact on most science metrics (left).

Figure 8. On the left, we show the coadded depth in each filter for a representative Deep Drilling Field. Larger values mean deeper coadded depth. On the right we show the standard science metrics. Because the DDFs take only a small fraction of the total time, the science impacts are fairly minimal.

We have run a variety of DDF strategies. Figure 9 shows the same observing season of the DDF ELIASS1 with 5 different strategies. We have run DDF strategies based on white papers from the AGN group and DESC, as well as several other variations.

- AGN: This strategy takes shorter DDF sequences more often. Only $\sim 2.5\%$ of visits are spent on DDFs, making the final coadded depths much shallower than other strategies.
- DESC: a strategy that split the blue and red filters to different days, emphasizing a 3-day cadence
- Baseline: Our baseline strategy where 5% of observations are allocated to DDF observations.
- Daily: Similar to the baseline, but includes short DDF sequences that can execute daily so there are no long gaps between observations
- DDF Heavy: Similar to the baseline, but 13.4% of visits are allocated to DDF observations

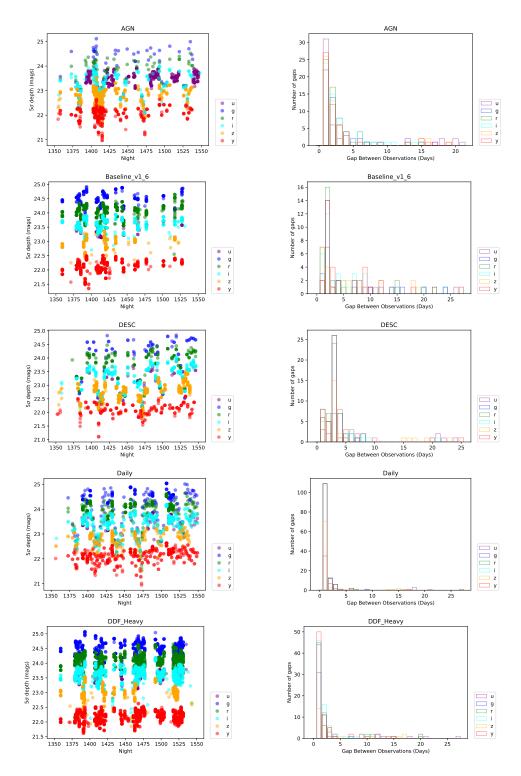


Figure 9. One observing season of the DDF ELIASS1 from 5 different DDF strategies.

Figure 8 shows the different coadded depths and science impact of the different DDF strategies. Overall, the sceince impact is minimal because all the DDF strategies use a limited amount of the total time, leaving the WFD region relatively unaffected.

Name	u	g	r	i	z	y
Uniform	1.00	1.00	1	1.00	1.00	1.00
Baseline	0.31	0.44	1	1.00	0.90	0.90
g heavy	0.31	1.00	1	1.00	0.90	0.90
u heavy	0.90	0.44	1	1.00	0.90	0.90
z and y heavy	0.31	0.44	1	1.00	1.50	1.50
i heavy	0.31	0.44	1	1.50	0.90	0.90
Bluer	0.50	0.60	1	1.00	0.90	0.90
Redder	0.31	0.44	1	1.10	1.10	1.10

Table 2. Variations of the filter distribution simulated.

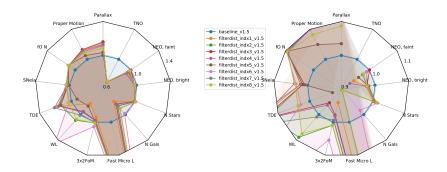


Figure 10. Science impact of varying the filter distribution

6.5. Filter Distribution

Testing a simple WFD-only footprint, but varying the requested ratio of observations in different filters. The different filter distributions simulated are listed in Table 2.

Varying the filter distribution reveals a slight tension between SNe science and solar system science, with SNe benefiting from more observations in bluer filters. Perhaps most relevant, we do not currently have a photometric redshift metric, which should be very sensitive to the filter distribution.

6.6. Footprints

We test a wide variation of possible survey footprints. Some of these are more realistic than others.

As we have come to learn, the fast microlensing rate depends strongly on the footprint. Similarly, the number of stars and number of stars can very greatly on the footprint depending on how much of the galactic plane is covered or how much dusty regions are avoided. The one slightly surprising result is how the number of TNOs can vary with the footprints.

6.7. Good Seeing

These test the ability to ensure the entire WFD area is imaged in "good seeing" conditions every year, here defined as FWHM of 0.7 arcseconds or better.

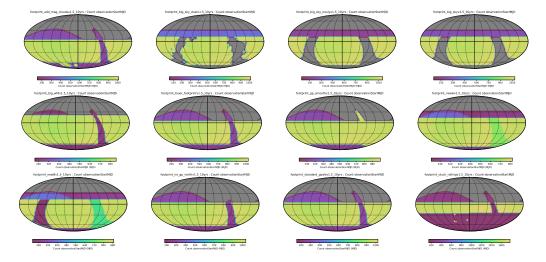
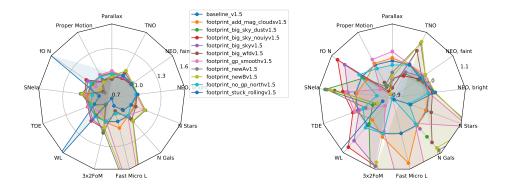
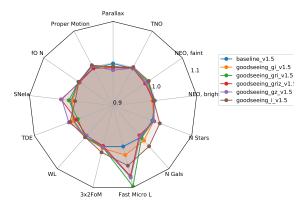
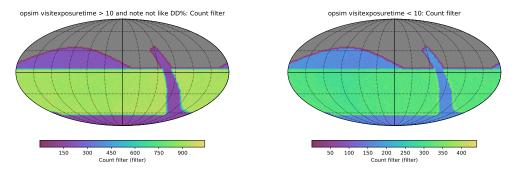


Figure 11. The different survey footprints simulated.




Figure 12. Science impact of varying the survey footprint.

These runs work well and it seems to add no particular overhead to the observing. It might make it more challenging to implement in operations, simply because the baseline simulation can simulate an entire night and pass off the list to be observed. If we want to run with the goal of collecting good seeing images, we will need to update the observing queue every time the seeing conditions change significantly, which could result in changing the upcoming observations more often than is desired.


The science impact of ensuring we have good seeing templates seems to be very minimal, with science metrics varying by only a few percent.

6.8. Short Exposures

We try taking additional short exposures (1s or 5s) twice or five times per year. Taking shorter exposures is a less efficient observing mode, but it seems to have little impact on the overall open shutter fraction. Similar to taking exposures in good seeing conditions, including short exposures each year has only a few percent impact on our science metrics.

Figure 13. The science impact of making sure the sky has template images in good seeing conditions.

Figure 14. Results from including 5s exposures (up to 5 per year). The left shows the number of regular 30s visits (excluding DDF observations) and the right shows the number of 5s visits.

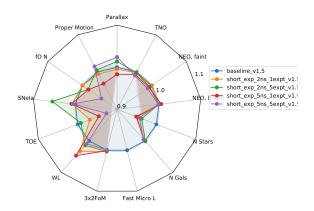


Figure 15. Science impact of covering the sky in short exposures.

We look at keeping diffraction spikes aligned along CCD rows and columns. This may result in the camera rotator angle being much less randomized than our baseline rotational dithering strategy. There is little impact on our science metrics, but we note we do not currently have a metric the measures weak lensing systematics.

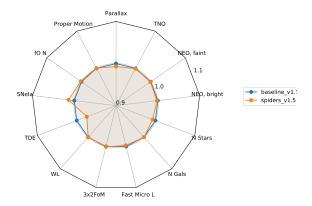
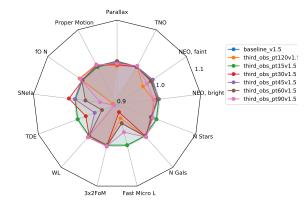



Figure 16. Science impact of keeping diffraction spikes aligned along rows and columns.

Figure 17. The science impact of dedicating the end of the night to gathering observations of areas that already have pairs.

For early identification of transients, it can be helpful to have more than two observations in a night. In these observations, we dedicate between 15 and 120 minutes at the end of the night to attempting to observe areas of sky that already have been observed. The science impact of adding third observations seems to be minimal. This highlights our need for a metric that quantifies how well we will be able to classify new transients.

6.11. Twilight NEO Survey

This is an implementation of Seaman et al. white paper where we use twilight time to take short exposures along the ecliptic to search for NEOs. If we dedicate all twilight time to NEO searches, we fail to meet the SRD requirements. Thus we also check running the NEO survey every 2, 3, or 4 days. Despite being designed to discover more NEOs, we find that we only discover a few more bright NEOs than the baseline and lose detections of faint NEOs.

6.12. Longer u Exposure Time

The u-band observations are often expected be readnoise limited. We test doubling the u-band exposure time and cutting the number of exposures in half. This results

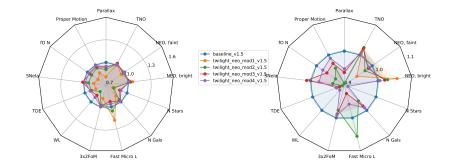
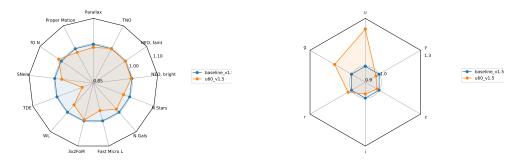



Figure 18. The science impact of using some or all of twilight time for a NEO survey.

Figure 19. Increasing the u exposure time to 60s. As expected, this results in a substantial gain in u coadded depth.

in the u-band final coadded depth reaching ~ 0.20 mags deeper. The g-band is also 0.10 mags deeper, with the rest of the filters essentially unchanged in final depth. The g depth increases because 60s u exposures decrease the overhead time, freeing up more dark time for g observations.

Note, we assume that 1x60s visit counts as 2 30s visits for the purpose of meeting the SRD value of 825 visits in the WFD area. Adopting longer exposures in u seems like a good idea, but the SRD will probably need to be modified to ensure it is not ambiguous.

6.13. Variable Exposure Times

We vary the exposure time based on the current conditions so individual exposures have similar depths. There is an argument that taking a full 30s visit in ideal dark time conditions results in "wasted depth", as more objects and transients will be detected, but then it will be impossible to identify them as later visits are unlikely to be as deep. Similarly, taking a 30s visit in poor conditions will result in a shallow image which will be of limited use. In good conditions, the exposure time is allowed to shrink to 20s, and in poor conditions it can extend to 100s.

As with doing 60s u band exposures, this may require modifying the detailed specifics of the SRD as longer exposures may need to count as multiple visits.

Having variable exposure time introduces at least 8 new free parameters to the scheduler (the target individual depth for each filter), as well as the shortest and

Figure 20. Comparison of a sample WFD point in the baseline and when we vary the exposure time. The individual observations depths become more uniform, especially in the redder filters that can be observed in bright time and twilight.

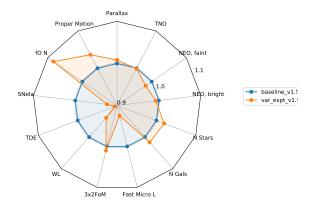
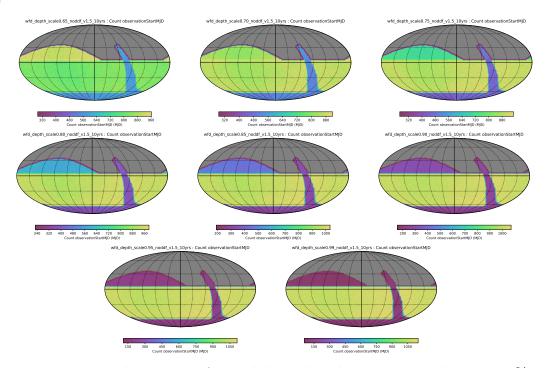


Figure 21. Science impact of using variable exposure times.

longest acceptable exposure times. As with 6.7, this would be more complicated to run in operations as the scheduler would need current conditions to calculate the modified exposure times, although the predicted sky brightness may be accurate enough.


Figure 21 shows the science impact of varying the exposure time is fairly minimal.

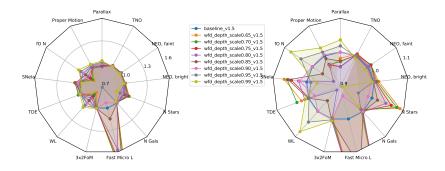
6.14. WFD Depth

We vary what fraction of the observing time is dedicated to the WFD area, from 60% to 99% with and without the standard DDF surveys. Unsurprisingly, the SRD is not met if the WFD is only given 60%.

6.15. Rolling Cadences

Rolling cadence is the term we have given to executing the survey in a non-uniform manner, emphasizing some region of sky one year, then deemphasizing it the next. Because the SRD includes requirements on stellar proper motion measurements, we are constrained to cover the sky uniformly in at least year 1 and year 10. We experiment with using rolling cadences where the WFD region is divided in 2, 3, and 6 declination bands. We also scale the rolling strength to be 80, 90, and 99%.

Figure 22. Varying the amount of time dedicated to the WFD region between 65% and 99% of the visits.



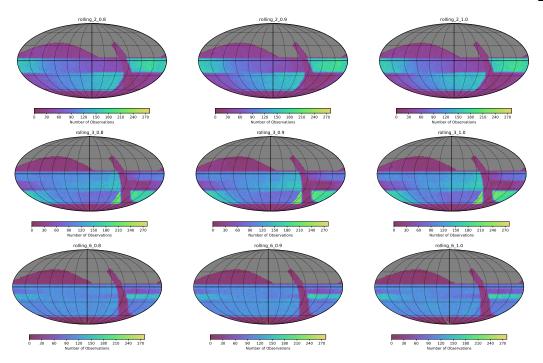
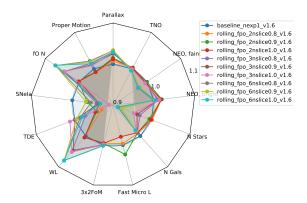

Figure 23. The Science impact of varying the WFD depth.

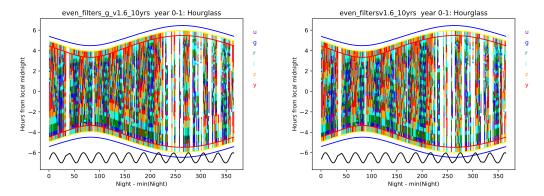
Figure 25 shows the science impact of the different rolling cadence simulations. Overall, the rolling has fairly negligible impact on the science metrics. Metrics from DESC show rolling can be beneficial to SNe lightcurves.


6.16. Even Filters

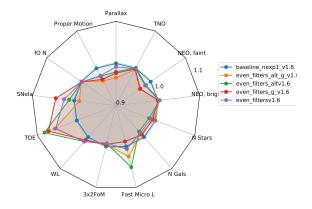
The baseline simulation is fairly aggressive in switching to redder filters in bright time. This can create long gaps in light curves with no bluer observations. We have run a simulation where only the u, and g filters avoid bright time, and a simulation where only u avoids bright time. Figure 6.16 shows the resulting filter distributions in year one. Unlike the baseline simulations, there are no longer sections of several days where only g is observed.

While the goal of these simulations was to improve SNe Ia lightcurves, the gains appear to be minimal over the baseline strategy.

Figure 24. Rolling cadence simulations with 2 (top), 3 (middle), and 6 (bottom) rolling stripes. Here we show the observations taken from 3.5-4.5 years in the survey, excluding the DDF observations.


Figure 25. Science impact of different rolling simulations. The overall impact seems to be very small. While fast microlensing events can be impacted, that can be made up for by including more of the bulge in the WFD footprint.

6.17. Ecliptic Pairs


This simulation prohibits the twilight greedy algorithm from observing near the ecliptic, thus ensuring that all observations near the ecliptic are taken in pairs. This results in modest gains for NEO detection.

6.18. Aliasing

There was concern that if observations were too uniformly placed on the meridian, periodic sources would be aliased. Figure 6.18 shows the FFT of observations at a sample WFD point in the baseline simulation. There is some aliasing at ~ 1 day

Figure 26. The filter distribution for the even filter simulations. Unlike the baseline simulations, bluer filters are observed in bright time.

Figure 27. Science performance for the Even Filters runs. Taking bluer filters in bright time can improve SNe performance and fast transients, but is detrimental to Solar System science. The loss of depth shows up in most of the other metrics as well.

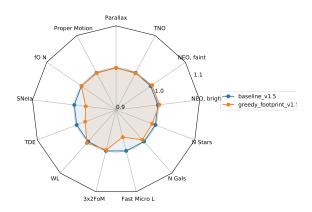


Figure 28. Science impact of not permitting greedy observations near the ecliptic.

which is inevitable for any ground-based telescope. The aliasing is much lower than the minion_1016 simulation that was analyzed in the Bell et al. cadence white paper.

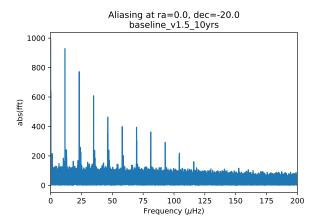
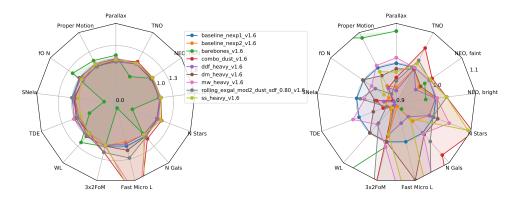
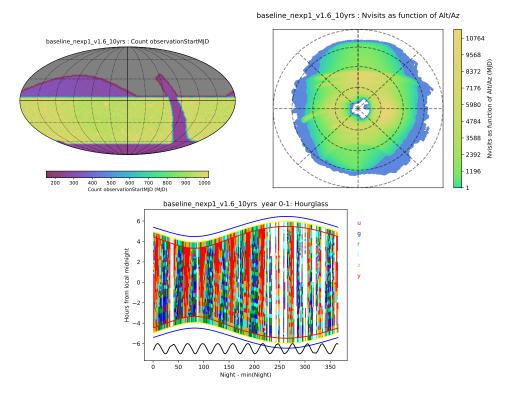


Figure 29. Aliasing at a sample position in a baseline simulation. There are peaks at harmonics of 24 hours, but this is inevitable with a ground-based telescope. The aliasing seems much lower than earlier version of OpSim where harmonic peaks could be seen past $200~\mu Hz$.




Figure 30. The science impact for the different version 1.6 simulations.

Here we describe the runs done as part of the FBS 1.6 release. Unlike our previous simulation releases, we are trying a limited number of simulations that combine various options from previous experiments.

7.1. Baseline

For the baseline strategy, we set the footprint to have 18,000 square degrees dedicated the the WFD survey. The WFD has a filter distribution of u:g:r:i:z:y of 0.31:0.44:1.0:1.0:0.9:0.9. We include coverage of the Galactic Plane (GP) and South Celestial Pole (SCP). These areas are set to have 20% the number of counts of the WFD (if a spot in the WFD has 900 visits, points in the GP and SCP will have 180 visits). The GP and SCP are set to have equal number of visits in all filters. The North Ecliptic Spur (NES) is observed with only the g, r, i, and z filters. The NES area is set to have one-third the number of visits of the WFD. The filter distribution is set to g:r:i:z of 0.2:0.46:0.46:0.4.

The total breakdown of target observing time is 85% for WFD, 6% for the NES, 6% for the GP and NES, and 5% for DDFs.

Figure 31. The baseline v1.6 simulation. The top panels show the distribution of visits (all filters) in RA/dec and Alt/Az. The bottom panel shows the first year of observations color-coded by what filter was loaded. White regions represent scheduled and unscheduled downtime as well as weather downtime. The black curve on the bottom shows the moon phase.

While the different survey areas are covered to different depths, the baseline scheduler treats them identically and only tries to maintain the proper ratios of area coverage. This means blocks of observations can be scheduled that cover the different regions seamlessly. It also means we have no additional constraints on how the regions are observed. For example, we currently do not reserve "good seeing" time for the WFD area.

The baseline survey includes the 4 announced Deep Drilling Fields as well as a pair of fields that overlap the Euclid Deep Field South. Each individual DDF is set to take a maximum of 1% of the total visits (the Euclid pair of fields are set to a maximum of 1% combined). The standard DDF sequence is ux8, gx20, rx10, ix20, zx26, and yx20, all with 30s exposures. For any given sequence, only the five filters loaded in the camera are executed. By default, we remove the u filter when the moon is more than 40% illuminated at the start of the night.

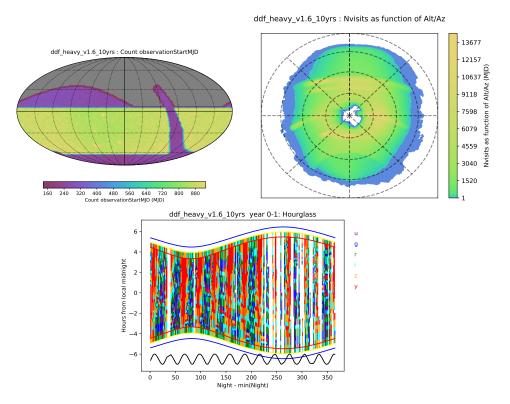
We run 2 baseline simulations, one with 1x30s visits and one with 2x15s visits. The main difference is the additional readout time in the 2x15 version drops the open shutter fraction from 77% to 72%. This puts the 2x15s simulation close to failing the SRD FO metric, with some parts of the WFD region only reaching 824 observations (the median is still 892).

For the rest of the simulations in v1.6 we use 1x30s visits. If 2x15s visits are required there will be a significant drop in the number of visits, and areas outside of the WFD may need to be scaled back to still meet SRD requirements.

When it is non-twilight time and we are not observing DDFs, we use a Markov Decision Process to dynamically build a queue of observations. Observations are planned in 44 minute blocks (22 minutes for an initial area, 22 minutes to repeat the area). The size of the blocks can scale slightly to try and fill time before twilight (e.g., it will expand to a pair gap of 25 minutes if there are 50 minutes until morning twilight begins). All observations are taken in pairs, with potential combinations of u+g, u+r, g+r, r+i, i+z, z+y, or y+y. The ordering of the filter pairs can change depending on what filter is currently loaded (e.g., if the scheduler decides to observe a g+r sequence, the r observations will be taken first to eliminate a filter change if possible.)

The camera rotator angle (relative to the telescope) is randomly set each night between -80 and 80 degrees. The angle is set when the block is scheduled, so there can be a few degrees of drift between when the rotator angle is computed and when the observation is actually taken.

The MDP uses basis functions based on


- The 5-sigma depth (for both filters in the pair being taken)
- The footprint uniformity (again, in both filters)
- The slewtime
- Staying in the current filter
- Rewards taking 3 observations per year per filter over the entire survey footprint

The MDP also includes basis functions that are simple masks

- Zenith is masked (to avoid long azimuth slews)
- 30 degrees around the moon is masked
- The bright planets (Venus, Mars, and Jupiter) are masked with a 3.5 degree radius

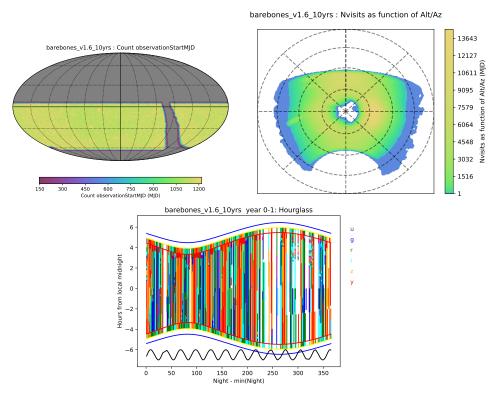
If the sun is higher than -18 degrees altitude, or there is not enough time remaining to take observations in pairs, the scheduler reverts to a greedy algorithm and selects observations one at a time. We use a similar MDP for these greedy twilight observation decisions.

Compared to many of the other simulations, the baseline spends a lot of time observing the WFD, with a median of 948 visits. The higher number of visits means a faster cadence and better sampled lightcurves for objects with durations comparable to a season length. Our baseline simulation also has very light coverage of the Galactic bulge, resulting in fewer fast microlensing events than other potential footprints.

Figure 32. DDF Heavy simulation. Nearly identical to the baseline, but giving as much time as possible to DDF observations.

7.2. DDF Heavy

This run is nearly identical to the baseline, but gives a large fraction of time to the deep drilling fields. Each of the five DDFs takes between 2.4 and 2.9% of the survey, with 13.4% of all visits being used for DDF observations. The baseline has 4.6% of visits used for DDFs. This is enough time that the WFD area near the DDFs fails to reach 825 visits over 10 years, but the SRD requirement is formally still met because the median WFD point is observed 875 times.


As expected, the majority of non-DDF science cases suffer if we dedicate such a large fraction of time to the DDFs. This is another time to point out we could use more science metrics from the community that are sensitive to DDF science.

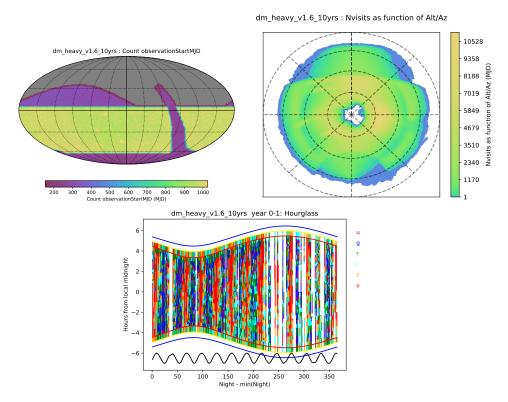
7.3. Barebones

The barebones simulation is an not a viable survey strategy, but provides an extreme example where we focus exclusively on meeting the SRD requirements, with little optimization for science.

The survey footprint is restricted to the baseline 18,000 square degree WFD area only. Deep drilling fields are included, but capped at $\sim 2.5\%$ of the total visits. Visits in u and y are unpaired, while the rest of the filters are paired in the same filter. This results in very few filter changes in a night.

There are a wide number of reasons why this would be a terrible survey strategy—detected transients would have no color information, photometric uber-calibration

Figure 33. The barebones simulation covering just the WFD area as efficiently and deeply as possible.


could be difficult with the galactic plane gap, a lack of solar system object because the NES is not included, etc. The main purpose is to show the scheduler can run very near the theoretical maximum for open shutter fraction, with this run reaching 80%. Also, we can note the fONv metric reaches 1,148 which is 40% higher than the SRD requirement of 825. This also implies that we can observe a maximum of ~ 115 WFD visits per year in the event we want to adjust the scheduler to attempt to catch up on the WFD progress.

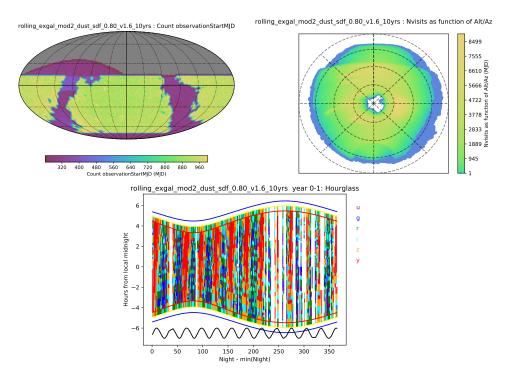
The total lack of bulge coverage means the barebones simulation contains virtually no fast microelsning events. Taking pairs in the same filter also radically reduces the number of SNe Ia that are well measured.

7.4. Data Management Heavy

This is simulations includes various modifications that may be helpful for Data Management purposes. For the WFD region in u, g, and r a few images per year are taken at high airmass so that DCR correction models can be made.

The camera rotator angle is set so that diffraction spikes fall along CCD rows and columns. This helps with difference imaging so the maximum possible area can be used, but may result in weak lensing systematics. Each year, the scheduler prioritizes taking g,r,i images of the whole sky in good seeing conditions (defined as 0.7"effective FWHM or better). The DDF fields use larger dithers, up to 1.5 degrees, compared to the default 0.7 degree maximum.

Figure 34. The DM heavy simulation. Similar to the baseline, but the alt/az plot shows how some observations are being taken at high airmass to support DCR modeling.


The addition of images taken at high airmass has a small negative impact on most science cases.

7.5. Rolling Extragalactic

The rolling extragalactic is motivated by cosmological drivers. The footprint is modified so the 18,000 square degrees of the WFD are placed in low-extinction regions. The simulation also executes a half-sky rolling scheme, which should result in better sampled lightcurves for extragalactic transients.

This simulation divides the sky into quarters, and has one northern stripe and one southerns stripe with a rolling emphasis at a time. This could be preferable to a simple two-bad rolling scheme, because with the quarters a region of emphasis will always be available to northern telescopes. If we rolled with an emphasis purely on the southern half of the WFD region, $\sim 80\%$ of the Rubin alert stream would become unavailable to northern hemisphere observatories for that season.

As expected, avoiding high extinction regions increases the number of galaxies. We expect the addition of rolling will show improvements in more sophisticated SNe Ia metrics from the community. The footprint covers some of the Magellenic Clouds, boosting the fast microlening events. The science gains come at the expense of some of the SRD metrics.

Figure 35. The Rolling Exgal simulation. The WFD area is set to be 18,000 square degrees of low extinction area.

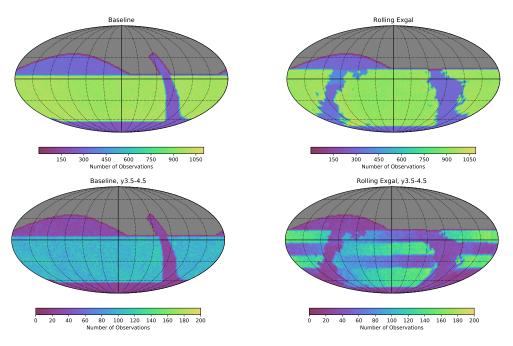
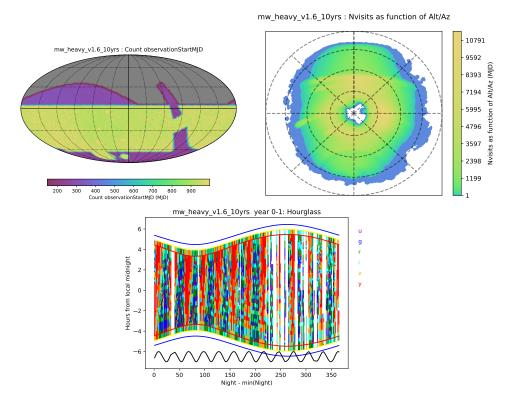
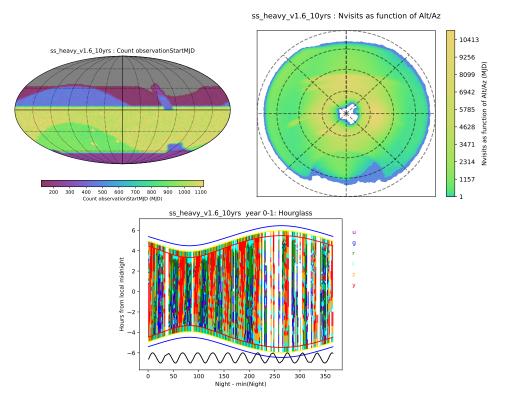



Figure 36. Illustration of rolling cadence. The top panels show the number of observations after 10 years (all filters) for the Baseline and Rolling Exgal simulations (excluding DDF observations). Both simulations have very smooth WFD coverage, with ~ 900 observations. The lower panels show the number of observations taken between 3.5 and 4.5 years. The baseline WFD remains smooth, while the Rolling Exgal simulation has declination stripes of high and low counts.

Figure 37. The Milky Way heavy simulation. Similar to the Baseline, but the bulge and Magellanic Clouds are added to the WFD area.

The Milky Way heavy simulation covers the Galactic bulge, LMC, and SMC as part of the WFD area.

There is very little change in the median coadded depths compared with the baseline since the extra WFD area is added to a region of the sky that is under-subscribed in the baseline. In the baseline simulation, there are an excess of observations near the galactic plane, so covering the bulge is "free", in the sense that it uses these excess pointings to cover the bulge.


There is a large boost in microlensing events and number of stars, with little impact on the other metrics. We would benefit from other metrics for bulge-specific science cases to explore using a different filter distribution for the bulge region.

7.7. Solar System Heavy

For the Solar System Heavy simulation, the footprint in modified to include ecliptic plane coverage through the galactic plane.

A fraction of twilight time is used for a NEO survey. The NEO survey uses very short exposures at high airmass. Note, a NEO survey taking short exposures will drastically increase the data throughput of the system. DM needs to check if this mode of observing would be feasible. We also need to check with the camera team that taking short exposures for an extended time will not be a thermal issue.

This simulation only uses i,z,y in twilight time, making sure we observe more r-band in non-twilight and in pairs. It also includes r+r pairs in non-twilight time.

Figure 38. The Solar System heavy simulation. The high airmass observations are twilight NEO observations.

For regular 1x30s visit twilight observations, we avoid observing the ecliptic, thereby ensuring they are always taken in pairs in non-twilight time.

The simulation shows only a modest improvement in the solar system metrics, and significantly impacts SNe Ia because of the addition of pairs in the same filter. This suggests solar system metrics may be more sensitive to footprint, or our NEO metric is not working correctly.

7.8. Combo Dust

This simulation attempts to improve several science cases compared to the baseline simultaneously. The footprint used here starts with defining the WFD area as 18,000 square degrees with low extinction. Then an additional 2,000 square degrees are added to WFD to cover the bulge, the ecliptic through the galactic plane, the LMC and SMC, and an outer Galactic plane region. Dusty areas of the sky and the South Celestial Pole are covered at about one-quarter the WFD depth. The NES is covered in g, r, i, and z. The footprint also includes very light coverage to the northern limit of the telescope in g, r, and i so there can be templates for ToO events on the entire accessible sky. This simulation includes the same half-footprint rolling scheme as Rolling Extragalactic.

The footprint has 35 free parameters for setting the various region locations and filter ratios. Many of these have have been set by eye or use historical values of questionable providence.

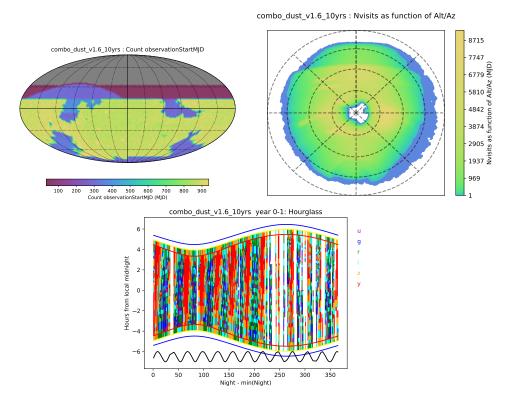
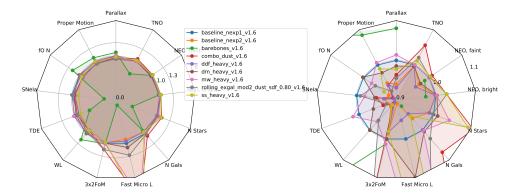



Figure 39. The Combo Dust simulation. Similar to the Rolling Exgal simulation, but the WFD is expanded to include the bulge and ecliptic, Magellanic Clouds, and an anti-center bridge.

filter	Baseline	Baseline	Barebones	DDF	DM	MW	Rolling	SS	Combo
		2 snaps		Heavy	Heavy	Heavy	Exgal	Heavy	Dust
	(mags)			m	Baseline -	$-m_{ m Sim}$			
u	25.86	0.24	-0.13	0.08	0.11	0.02	0.11	-0.02	0.12
g	26.97	0.11	-0.15	0.09	0.12	0.01	0.10	0.07	0.14
r	26.95	0.08	-0.12	0.08	0.07	0.01	0.10	0.05	0.14
i	26.40	0.07	-0.17	0.11	-0.01	0.01	0.11	0.11	0.15
${f z}$	25.67	0.06	-0.12	0.08	-0.01	0.01	0.11	0.02	0.11
У	24.90	0.06	-0.14	0.06	0.04	0.01	0.09	0.03	0.09

Table 3. Difference in median depths compared to Baseline for v1.6 simulations. Negative values indicate deeper depths.

This simulation manages to boost nearly all the science metrics (by including rolling, we expect other the SNe metrics to show improvement) at the expense of the SRD metrics. When we run the combo_dust with 2x15s visits, the fO metric drops below the SRD requirement of 825 visits to 817 visits. The footprint can be adjusted to meet the SRD requirement, but it does imply there will be very little contingency if we use 2-snap visits. The 1x30s visit combo_dust has a median of 885 visits in the WFD region.

Figure 40. Science impact for the v1.6 runs. The barebones survey performs very well on SRD requirements at the expense of almost all other science. The combo_dust run is the opposite, with low SRD scores and high science performance.

8. INDIVIDUAL VISIT LENGTH

What to do - 1x30s vs. 2x15s? 1x30s much more efficient (show rough calculation of overhead) than 2x15s, but may have drawbacks due to cosmic ray rejection and potential to miss very rapid transients (or WD detection .. ref white paper). Subtle drawback that 2x15s gives the same "midpoint exposure time" across FOV, 1x30s does not.

Show difference in 1x30s vs. 2x15s in whatever is our 'standard baseline' at this point.

There has been thought of using a variety of exposure times if we use two snaps (e.g., 5s + 25s). Because there are not plans to release catalogs from individual snaps, it's not clear if this would enable much new science.

Show effect of 7% loss in efficiency when attempting to combine minisurveys in various configurations (assume we will find some combinations possible with single exposure visits that are impossible with two snaps).

Also possible to use variable exposure time depending on seeing and sky brightness conditions. Shorter exposures in good conditions keeps us from observing "wasted" depth, letting us take longer exposures in poor conditions. This does introduce a host of new free parameters (an ideal target depth for each filter and minimum and maximum exposure times). This would might require rewording the SRD to ensure, e.g., that 20s visits in good conditions count for the number of visit requirement.

Relevant metrics: total number of visits, number of visits per field/filter

9. INTRA-NIGHT CADENCE

What to do for visit sequence within a night? White paper support for multiple filters within a night (except TNOs maybe?). Potential drawbacks - less efficient (show effect on efficiency). This applies to WFD primarily, but we've applied to any survey that did not have their own specifications (so, everywhere).

Extension of pairs to u band and y band (show effect).

Relevant metrics: inter-night visit gaps and SN discovery, SSO discovery/characterization, transient and variable discovery (??), number of visits

10. WIDE-FAST-DEEP FOOTPRINT

What to do for WFD footprint? SRD not specific, DESC want low-extinction sky (and depth), but WFD is generally the area of sky that receives the most visits, so generally other science will also benefit from more visits to their relevant areas (particularly galactic plane .. for time-domain studies primarily, not depth)

Relevant metrics: area of sky with 825 visits (under particular restrictions, like total coadded depth and individual image seeing and dust extinction), number of galaxies, number of resolved galaxies, SSO discovery, transient and variable star discovery, astrometry in the galactic plane (?)

11. ROLLING CADENCE

Motivation for a rolling cadence (more frequent visits in some years)

Different options for rolling and explanation of how implemented

Should really include discussion of recovery from bad weather years and simulation of same

Relevant metrics: Maintain astrometry requirements, SN discovery, SSO discovery and characterization, Transient and variable discovery, uniformity of coadded depth / number of visits,

12. NORTHERN MINISURVEYS

Add extension to cover Euclid/DESI with various numbers of visits

Observing NES

Effect of adding or removing these minisurveys

Relevant metrics: SSO discovery and characterization (particularly active asteroids), depth and number of visits through remainder of North

13. SOUTHERN MINISURVEYS

Add extension over south celestial pole, LMC/SMC with various numbers of visits Effect of adding or removing these minisurveys

Relevant metrics: number of visits and coadded depth over SCP, discovery of variables in LMC/SMC (see Olsen white paper for metrics?)

14. LOW GALACTIC LATITUDES

Discussion of definitions from SAC and recommendations for visits

Effect of adding or removing these minisurveys

Relevant metrics: number of visits, astrometry in bulge, discovery of variables/transients/microlensing in bulge (?)

15. TWILIGHT OBSERVING

Discuss need for twilight observing to meet SRD goals (weather, total amount of time available)

Add NEO twilight survey, add DCR white paper (season extension visits?)

Effect of adding or removing these minisurveys

Relevant metrics: NEO discovery, number of visits and coadded depth (and uniformity) in WFD, measurement of DCR, season length

16. DEEP DRILLING FIELDS

Discuss purpose and how these are scheduled (very different from other fields)

Discuss potential cadences (AGN/DESC) and how these differ, and our combination of the two

Discuss timing issues with oversubscription (and how much of a problem this could be, what if worse weather?) – include location of fifth DD field

Effect of adding or removing these minisurveys

Relevant metrics: number of visits and coadded depth for DD, SN detection in DDFs, AGN detection in DDFs *[solar system minisurvey DDF?]

17. TOO MODES

Discuss impact of ToO, and how we could implement ToOs in scheduler (various modes: straight to queue by hand or set up known program and supply trigger, etc. – that we're evaluating the second?)

Any ToO survey should also take into account that chip and raft gaps mean full sky coverage will require multiple images with spatial dithering.

Discuss how we can have a low coverage region to the north to maintain templates for all possible ToOs, or we could decide of only search for ToOs that are likely to be in the WFD area.

Relevant metrics: frequency of achieving ToO observations, number of visits and coadded depth in other surveys (WFD or other minisurveys that may be in particular contention)

18. FURTHER OPTIMIZING

Somewhere in here we probably ought to talk about optimizing the parameters for each run, and doing bigger sweeps across parameter space. That would easily expand each of the above options by many factors.

XXX—need to optimize basis function weights for both the blobs and the greedy algo.

XXX-can also discuss pre-scheduling the DDF sequences here.

19. CONCLUSIONS

Hopefully here we pare down the evaluation of 100s of runs (like promised) to a set of between 10 to 20 (if this is possible, after combining along different axes). The results should come with some basic comments about what's particularly good or bad in each of these areas and how we arrived at these general options.

Metrics we know we need to get from the community:

- Photometric redshift performance, especially as it relates to filter distribution
- Weak Lensing systematics, especially as related to camera rotator angle
- Deep Drilling Field metrics beyond coadded depth (e.g., AGN performance)
- Deep Drilling metrics that are sensitive to the spatial dither strategy
- Transient early classification metric
- More populations in the Galactic plane beyond the simple number of stars.

20. OUTSTANDING QUESTIONS

Here we go through some of the outstanding questions that the SCOC and scientific community can help resolve in order to converge on a final scheduler strategy for the Rubin Observatory.

20.1. Exposure Time(s)

We will probably need on-sky data to make a final answer to this question, but we need to eventually decide how many snaps to take in a visit. We have run the baseline simulation with both 1x30s visits and 2x15s visits. Another possibility is using variable exposure times to make the single visit depths more uniform.

Other questions related to exposure time

- Should we change the u-band to default to 60 second exposures to ensure they are not readnoise dominated? This might require decreasing the SRD 825 visit value. This choice would also severely limit u band time domain science (e.g., TDE early detection)
- Should we include some very short exposure time exposures. That would let us have better tie-in with other surveys (e.g., Gaia). It is relatively little exposure time, but the readout time means it is a low-efficiency way to operate the telescope.
- Should we decrease the exposure time in twilight to keep the saturation level reasonable?
- Should we use variable exposure times so individual exposures have more uniform depth? In poor observing conditions, we would have fewer exposures that were londer and in good conditions we would have more observations that are shorter.

20.2. Pairs and Filter Choice

There is a strong preference to take observations in pairs. Closely spaced observations let the pipeline identify moving objects. Similarly, observations in different filters are essential for transient classification.

The baseline survey (and most of our other experiments), take pairs in neighboring filters (e.g., u+g, g+r, etc). We should verify that this is a good pairing strategy. Similarly, we have done experiments where we attempt to observe a third observation in a night.

Taking pairs in different filters does increase time spent changing filters, but it's something like a 4% hit that seems totally worth the science gain so far.

Our baseline strategies heavily prefer to take y-band observations in bright time. While this is optimal for the possible SNR, it can result in long gaps between observations in bluer filters.

Similarly, we could expand or constrict the filters we pursue in twilight time. XXX–some 1.5 runs I think that vary which filters we run in twilight.

20.3. Survey Contingency

How much contingency should we aim for when designing the survey strategy? Currently, with what we believe is a conservative weather closure policy, we can meet SRD requirements with 2x15s visits, but can cover a larger footprint and do more science cases with 1x30s snaps.

20.4. Deep Drilling Fields

We have run a variety of Deep Drilling strategies. The DDF strategy is largely separable from the rest of the survey design, and we have a number of proposals for DDFs that we have yet to explore (e.g., rolling DDFs where a single DDF is completed in one observing season). We have started experimenting with pre-scheduling DDF observations.

- What fraction of the survey should be dedicated to the DDFs?
- Should DDFs be preferentially executed in dark time, or is it more important to maintain cadence?
- Where should the DDFs be placed (can we finalize the 5th DDF as a Euclid double-pointing)?
- What is the preferred dithering strategy (spatially and rotationally) for the DDFs? There is tension in that DM generally prefers larger dithers for calibration and co-addition purposes, while science cases prefer smaller dithers to preserve the area that reaches the deepest levels.
- Should we try "rolling" the DDFs, completing DDF observations in a field in only a few years?

20.5. Rotational Dithering

By default, we select a random camera rotation angle (wrt the telescope) nightly. This creates minimal additional slewtime, and seems to provide adequate angular randomization. We currently have no science metrics that depend on the angular distribution, and this should be something very important to weak lensing science (although we do not have a metric to measure this).

We have also experimented with setting the camera rotation angle to ensure stellar diffraction spikes fall preferentially along rows and columns.

• How should we rotationally dither visits?

20.6. Spatial Dithering

For the wide area regions we have had excellent results randomizing the tessellation orientation nightly. This does result in a small percent of time being spent observing outside the desired survey footprint. The alternative would be to limit the amount one dithers out of the footprint, but then one risks imprinting systematics on objects near the footprint border (e.g., an object is never observed in the center of the focal plane, only by outer rafts).

20.7. Survey Footprint

Perhaps the biggest question, what should we set the survey footprint to be?

- How should we cover the Galactic plane?
- How should we observe the Galactic bulge?
- Should we avoid areas of high dust extinction for the WFD area?
- What is the ideal filter distribution to use? It would be nice to have a photo-z metric to help make this decision.
- What is the ideal filter distribution in the GP and SCP?
- Should we cover the LMC and SMC as part of the WFD survey? As their own DDF-like survey? We have few metrics that touch on LMC/SMC science directly.
- Should we add area in the north to overlap with Euclid, WFIRST, and/or DESI?

Once the general survey footprint is decided, we can fine-tune the footprint (e.g., tapering the WFD region slightly around the RA with multiple DDFs, and flaring at under-subscribed RAs).

20.8. Rolling Cadence

We have gone through several iterations of rolling cadence, and now have started to converge on a technique that does not seem to impact the final survey depth.

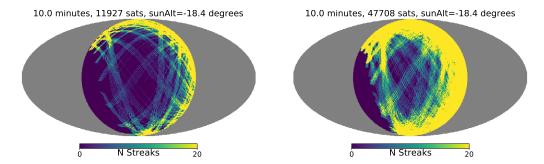
- Should we use a rolling cadence strategy?
- Should we roll just the WFD area, or other regions as well?

20.9. Best Use of Twilight Time

Our baseline simulation uses twilight time to fill in WFD observations in redder filters (rizy). We can use some of the time to conduct a NEO survey. We can also vary which filters get used in twilight time. The baseline greedy algorithm used in twilight is known to be rather unstable, so we could also try running more contiguous blocks in twilight. We could also emphasize targeting areas that have already been observed 4 or more times in the night, potentially gathering important color information for a small number of transients.

20.10. Target of Opportunity

Currently, the only expected ToO use of Rubin observatory is follow up of gravitational wave detections.


- When should Rubin interrupt observations to look for GW optical counterparts?
- Do we look for GW events in the WFD area, or anywhere on the sky?
- Should we expand the survey footprint so we have image differencing templates over the entire accessible sky, in at least a few filters?
- Should Rubin plan on observing the entire light curve of ToO events, or make observations primarily for detection/classification and leave detailed follow up to other observatories?
- What filter combination and dither strategy (filling chip and raft gaps) should be used for observing ToO triggers?

20.11. Image Differencing Templates, DCR

Do we need to do anything special to ensure we have adequate image templates? A certain number of observations per year? A certain fraction of images taken in good seeing conditions?

If we need to start considering image quality, that makes it more difficult to simulate a night ahead of time and maintain the list of upcoming observations.

Should we intentionally extend to high airmass to facilitate DCR modeling? Note that in the baseline, we only image a location in the WFD region ~ 9 times per year in g and ~ 6 times in u. Also, we have chip and raft gaps, so if we want to build a DCR model for the entire sky in g, we might be dedicating 1/3 of the g observations in a

Figure 41. Alt/az projection of simulated satellite megaconstellations as seen from the Rubin Observatory site after twilight has ended.

year to DCR. If we switch to $60s\ u$ band exposures, there would be no observations beyond building the DCR model.

There have been claims that measuring DCR can be used for science. We do not have any metrics that demonstrate any gains, and the loss of depth is noticeable. In theory, we could combine the DCR measurements to extend the season length of observations as well (e.g., only take DCR template images near twilight in the direction of the sun).

20.12. Satellite Megaconstellations

Starlink is poised to launch thousands of LEO satellites. Observations so far imply that final-orbit Starlink satellites should not saturate Rubin exposures, and thus can be masked fairly easily in the image reduction pipeline.

Do we need any further satellite mitigations? Will NEO twilight surveys still be viable in the presence of megaconstellations, or should we use twilight strategies that avoid the horizon?

Figure 20.12 shows how illuminated megaconstellations in LEO would leave numerous streaks on Rubin images.

20.13. Aliasing

• Are we taking observations at a large enough hour angle range that we do not need to implement further efforts to prevent aliasing of periodic sources?

20.14. Classification of Transients

One area where we should dedicate more work on is checking how well different survey strategies enable transient classification. This is similar to the PLAsTiCC challenge where a simulated survey was used to generate light curves and then fed to multiple classifiers. Here, rather than vary the classifiers, we vary the survey realization.

• Is the survey strategy adequate for classifying transients, or should we place more emphasis on getting more than two observations of a point in a night?

21. ACRONYMS

Acronym	Description
AGN	Active Galactic Nuclei
CCD	Charge-Coupled Device
COSEP	Community Observing Strategy Evaluation Paper
CTIO	Cerro Tololo Inter-American Observatory
DCR	Differential Chromatic Refraction
DDF	Deep Drilling Fields
DESC	Dark Energy Science Collaboration
DESI	Dark Energy Spectroscopic Instrument
DIMM	Differential Image Motion Monitor
DM	Data Management
FFT	Fast Fourier Transform
FOV	Field of View (LSST FOV is 3.5 sq deg)
FWHM	Full Width at Half-Maximum
GP	Galactic Plane (galactic plane modification to survey footprint)
GW	Gravitational Wave
LCO	Las Cumbres Observatories
LMC	Large Magellanic Cloud
LSST	Legacy Survey of Space and Time (formerly Large Synoptic Survey Telescope)
MAF	Metrics Analysis Framework
NEO	Near-Earth Object
NES	North Ecliptic Spur (northern extension in ecliptic plane to survey footprint)
OpSim	Operations Simulation
RA	Right Ascension
SAC	Science Advisory Committee
SCOC	Survey Cadence Optimization Committee
SCP	Southern Celestial Pole (southern extension to survey footprint)
SMC	Small Magellanic Cloud
SN	Supernova
SRD	LSST Science Requirements; LPM-17
SS	Subsystem Scientist
SSO	Solar System Object
TDE	Tidal Disruption Event
WD	White Dwarf
WFD	Wide Fast Deep (standard 'universal' footprint)
XMM	X-ray Multi-mirror Mission (ESA; officially known as XMM-Newton)
ZTF	Zwicky Transient Facility
arcsec	arcsecond second of arc (unit of angle)
\deg	degree; unit of angle

REFERENCES

Bellm, E. C., Kulkarni, S. R., Barlow, T., et al. 2019, PASP, 131, 068003

Delgado, F., Saha, A., Chandrasekharan, S., et al. 2014, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Lampoudi, S., Saunders, E., & Eastman,

J. 2015, arXiv e-prints,

arXiv:1503.07170

Naghib, E., Yoachim, P., Vanderbei, R. J., Connolly, A. J., & Jones, R. L. 2019, AJ, 157, 151 Rothchild, D., Stubbs, C., & Yoachim, P. 2019, PASP, 131, 115002